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Abstract—The present paper reports the Bio-Magnetic convection in 
a pulsatile rheological fluid flow in a channel filled with porous 
medium. The heat transfer in a non-Newtonian biofluid through a 
saturated non-Darcian porous medium channel is also discussed. 
Here the lower and upper plate are at different temperature. The 
upper is heated whereas the lower one is cooled. The Nakamura-
Sawada rheological model is adopted during the study due to higher 
yield stress than the Casson model. The Forchheimer model is 
adopted in the momentum equation to simulate blood vessel blockage 
with deposits in the cardiovascular system. The viscous heating is 
also introduced in the energy equation. The physical model is formed 
in the form of the set of coupled PDE. The similarity transformation 
process is taken into account to transformed the system of PDE into 
system of nonlinear, coupled ordinary differential equations. The 
complete system of equation is solved using FEM method. The study 
of different physical parameter is presented graphically. Spatial-
temporal velocity and temperature profile visualizations are also 
presented. Numerical results shows that normalized fluid velocity (U) 
increases throughout the channel (-1 < Y < 1) with an increase in 
Reynolds number, Darcian parameter, steady pressure gradient 
parameter and rheological parameter; conversely velocity is 
decreased with increasing magnetic parameter and Forchheimer 
quadratic drag parameter 
 
Keywords: Bio-Magnetic convection; porous media; rheology; heat 
transfer; pulsatile; numerical, FEM Method. 

1. INTRODUCTION 

These The study of pulsating flows is of practical engineering 
importance. High speed (turbulent) pulsating flows occur in 
turbo machinery, rotor blade aerodynamics, reciprocating 
piston-driven flows, etc. Numerous experimental 
investigations were focused on fundamental studies of fully 
developed periodic pipe flows with sinusoidal varying 
pressure gradients (or flow rates). Low speed (laminar) 
pulsating flows were studied in order to analyze the flows 
through small pipes or in the blood circulation systems. 

Laminar flows are relatively simple for analytical (or 
numerical) analysis and are a natural choice to provide basic 
studies of fundamental hydrodynamic effects in pulsating 
flows [1]. Pulsatile flow has also recently found renewed 
significance in its application to MEMS microfluidic 
engineering applications [2]. A complete treatment of the fluid 
dynamics of steady and pulsatory flow with emphasis on basic 
mechanics, physics and applications can be seen in [3]. 

Many researchers has contributed in this area. Sharma and 
Kapoor [4] presented a finite element solution of the Navier-
Stokes equations for steady flow under a magnetic field via a 
double-branched two-dimensional section of a three-
dimensional model of the canine aorta in a curvilinear 
boundary-fitted co-ordinate system. 

A finite element technique is used by Bhargava et al. [5] to 
analyze pulsating magnetohydrodynamic blood flow and 
species diffusion in a porous medium channel using the 
Darcy-Forchheimer model. The Newtonian biomagnetic flow 
of blood in a Darcy-Forchheimer porous regime was studied 
by Bég et al [6]. 

Very recently Sharma et al[7] study a mathematical model for 
the hydro-magnetic non-Newtonian blood flow in the non-
Darcy porous medium with a heat source and Joule effect is 
proposed. they finds its applications in surgical operations, 
industrial material processing and various heat transfer 
operations. 

Hayat et al. [8] have studied the influence of heat transfer in 
an MHD second grade fluid film over an unsteady stretching 
sheet. Vasudev et al. [9] have investigated the influence of 
magnetic field and heat transfer on peristaltic flow of Jeffrey 
fluid through a porous medium in an asymmetric channel. 
They studied the effects of magnetic field and heat transfer on 
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oscillatory flow of Jeffrey fluid through a porous medium in a 
circular tube. 

More recently [11-17] studied have been made in this 
mathematical modeling. In the present problem we study the 
pulsatile magneto-rheological blood flow and heat transfer 
under transverse magnetic field with viscous heating effects 
through a Darcy-Forchheimer porous medium channel cooled 
at the lower plate and heated at the upper, using the 
Nakamura-Sawada bi-viscosity non-Newtonian model.  

2. MATHEMATICAL FORMULATION  

Consider the unsteady, two dimensional, laminar, 
incompressible, electrically-conducting pulsating, bio-
rheological fluid flow between two parallel plates intercalating 
an isotropic, homogenous, saturated, Darcy-Forchheimer 
porous medium. The two plates are located at a distance 2H 
apart with reference to an (x, y) coordinate system, where x 
defines the longitudinal coordinate parallel to the plates and y 
the transverse coordinate, perpendicular to the wall. The lower 

plate is kept at temperature 1T  and upper plate at temperature 

2T  such that 1 2T T . In the present model, the pulsatory 

character of the physiological flow is generated by a source at 
infinity, (the actual pulsatile flow is due to the pumping of the 
heart in the human cardiovascular system). The physical 
model is shown in fig. 1. In order to simulate the inertial drag 
effects imparted by the porous matrix in higher velocity flow, 
the Darcy-Forchheimer model is used. Magnetic Reynolds 
number is assumed to be small enough to neglect induced 
magnetic field effects and the applied magnetic field is 
uniform. The absence of an electrical field also allows 
exclusion of the effect of polarization of the ionized biofluid 
(blood). Joule heating effects are also ignored.  

 

Fig. 1: Physical Model and Coordinate System 

Wall transpiration is present at both plates via injection at the 
lower plate (y = -H) and suction at the upper plate (y = +H). A 
stress tensor ij  is introduced into the momentum equation to 

take into account the rheological characteristic of the blood. 
We employ the bi-viscosity rheological model which is 
defined as follows: 

߬ூ௃ ൌ ቐ
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where ij ije e   and ije  is the ( , )thi j  component of the 

deformation rate, c  is a critical value of this product based 

on the Nakamura-Sawada model, B  is plastic dynamic 

viscosity of the non-Newtonian fluid and yP  is yield stress of 

the fluid. Since the channel walls are infinitely long, the flow 
variables (velocity, temperature) are purely functions of y and 
τ. The system of equations governing the flow and energy is 
therefore given by: 

Linear Momentum Equation: 
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Energy (Heat) Equation: 
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The corresponding boundary conditions on the horizontal plate 
surfaces are: 

ݕ ൌ െܪ: ݑ ൌ 0, ܶ ൌ ଵܶ (4a) 

ݕ ൌ :ܪ ݑ ൌ 0, ܶ ൌ ଶܶ (4b) 

where ߤ is Newtonian dynamic viscosity, ଴ܸ is wall 
transpiration velocity ሺ 	ܸ ൌ ଴ܸሻ at the lower plate and ܸ ൌ
െ ଴ܸ at the upper plate), ߚ denotes the upper limit of the 
apparent viscosity coefficient, where u is the x-direction 
(longitudinal velocity), P is the hydrodynamic pressure, ߤ	is 
the dynamic viscosity, pk  is hydraulic conductivity 

(permeability) of the porous material,  is the density of the 
fluid, b is a Forchheimer (inertial drag) coefficient related to 
the porous medium geometry,   is the dimensional time,  is 
the electrical conductivity of the biofluid (assumed constant), 

oB  is the transverse magnetic field strength,  is thermal 

diffusivity, cp is the specific heat capacity of the biofluid, T 
denotes biofluid temperature and P/x denotes longitudinal 
pressure gradient. Proceeding with the analysis we now 
normalize the flow model using the following transformations: 
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where X and Y are dimensionless coordinates parallel and 
transverse to the channel walls respectively, U is the 
transformed velocity component in the X-direction, P* is the 
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transformed hydrodynamic pressure (* dropped for 
convenience in analysis), t is dimensionless time,  is 
dimensionless temperature, Re is a transpiration Reynolds 
number, Nm is the hydromagnetic parameter,  is a Darcian 
(permeability) parameter, NF is the Forchheimer (quadratic 

porous drag) parameter, ௠ܶ ൌ భ்ା మ்

ଶ
 is the characteristic 

temperature, Pr is the Prandtl number and Ec is the Eckert 
Number. Introducing (5) into equations (1)-(3) leads to the 
following set of non-linear, coupled, ordinary differential 
equations: 

Momentum Equation: 
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Energy Equation: 
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The transformed spatial boundary conditions now become: 

ܻ	ݐܣ ൌ െ1 ∶ ܷ ൌ 0, ߠ ൌ 	െ1 (8a) 

ܻ	ݐܣ ൌ െ1 ∶ ܷ ൌ 0, ߠ ൌ 	1 (8b) 

Similar thermal boundary conditions (i.e. negative at one wall 
and positive at the other) were employed recently by Grosan 
and Pop (2007) in their study of fully-developed mixed 
radiative-convection in a vertical channel. The pressure 
gradient is decomposed into a steady component and an 
imposed (oscillatory) component as follows: 
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where ( )s is the steady component and ( )o is oscillating 
component. This approach had already been implemented 
extensively in pulsatile flow studies. 

3. NUMERICAL SOLUTION BY THE FINITE 
ELEMENT METHOD 

The transformed two-point boundary value problem defined 
by equations (6,7) with boundary and initial conditions (8a,b) 
has been solved using the finite element method (FEM). FEM 
has been shown to be highly versatile and extremely accurate 
in fluid dynamics analysis. To solve the current coupled, 
nonlinear problem, we first redefine the pressure gradient as: 
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Using equation (10) the momentum equation (6) now 
becomes: 
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The initial temporal condition is defined as:  

ݐ	ݐܣ ൌ 0 ∶ ܷ ൌ 0, ߠ ൌ 	െ1  (12)   

The whole domain is divided into a set of 82 line elements of 
equal width, each element being two-noded. A number of 
stages are inherent in the analysis. We consider these in turn 
now. 

Variational Formulation: 

 The variational form associated with equations (14), (7) over 
a typical two-noded linear element ሺ ௘ܻ, ௘ܻାଵሻ is given by: 
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where ݓଵ and ݓଶ are arbitrary test functions and may be 
viewed as the variation in ܷ and ߠ respectively. 

Finite Element Formulation: 

 The finite element model may be obtained from equations 
(16)-(17) by substituting finite element approximations of the 
form: 
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With ݓଵ ൌ ଶݓ ൌ ߰௜	ሺ݅ ൌ 1,2ሻ	݁ݎ݄݁ݓ	߰௜	are the shape 
functions for a typical elementሺ ௘ܻ, ௘ܻାଵሻ and are defined thus:  
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The finite element model of the equations for a typical 
elementሺ ௘ܻ, ௘ܻାଵሻ thus formed is given by:  
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(17) where ሾܭ௠௡ሿ, ሾܯ௠௡ሿ, and ሾܨ௠ሿ, (m ,n=1,2) are matrices 
of order 2x2, 2x2, and 2x1, respectively. Also ௜ܷ 	and ߠ௜ are 
derivatives of ௜ܷ and ߠ௜ with respect to t. All these matrices 
may be defined as follows: 
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(18) 
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where ഥܷ ൌ ∑ పܷഥ ߰௜
ଶ
௜ୀଵ  and each element matrix is of the order 

4 ൈ 4. Following assembly of all the element equations we 
obtain a matrix of order 166 x 166. This system of equations is 
non-linear and is linearized by incorporating the functions ഥܷ 
which are assumed to be known. After applying the given 
boundary conditions only a system of 162 equations remain 
then to be solved and this is performed iteratively by the 
Gauss-Seidel method maintaining an accuracy of 0.0005. 

4. GRAPHICAL RESULTS AND DISCUSSION 

Numerical simulations have been performed to study the 
effect of Reynolds number (Re), rheological parameter (β), 
steady component of pressure gradient (Ps), Darcy number (λ), 
Forchheimer number (NF), hydromagnetic parameter (Nm), 
Eckert number (Ec) and Prandtl number (Pr) on velocity, U, 
and temperature, θ profiles across the channel (Y) with time, t. 
We assume blood (ρ = 1050 kg m-3) flows between plates 
located at distance 2H = 1 × 10-2m with suction Vo = 0.01 × 
10-2 ms-1 to obtain physically realistic computations . For this 
data, transpiration Reynolds number Re is equal to 
0.2(approx.). The Prandtl number (Pr) can be considered 
constant since the viscosity μ and specific heat under constant 
pressure cp and the thermal conductivity (k) of any fluid, and 
of the blood are temperature-dependent. 

 Characteristic values of μ, cp, k are taken as 3.2 ×1 0-3 Kgm-1s-

1, 14.65 J Kg-1 K-1 and 2.2 × 10-3 J m-1 s-1 K-1 respectively. 
Following this data we also specify Pr = 21 and Ec = 6.2 × 10-

11 as default values in the computations. The Eckert number 
signifies the amount of mechanical energy dissipated as 
thermal energy in the flow. The electrical conductivity (σ) of 
stationary blood has been quantified as 0.7 s m-1 . Since the 
electrical conductivity of flowing blood is always greater than 
that of stationary blood, in the present study we elect to use a 
slightly higher value of 0.8 s m-1 and conductivity is assumed 
to be temperature-independent for simplicity. According to 
our computations the default values of the control parameters 
are: Reynolds number (Re) = 0.2, non-Newtonian parameter 
(β) = 4, dimensionless angular frequency (ω*) = 8, steady 
component of presure gradient (Ps) = 8, pulsating amplitude 
(Po) = 5, Darcian parameter (λ) = 0.7, Forchheimer parameter 
(NF) = 0.03 (which corresponds to very weak inertial effects), 

magnetic field (Nm) = 2.4, Eckert number (Ec) = 6.2 × 10-11 
and Prandtl number (Pr) = 21, unless otherwise stated.  

In order to obtain the accuracy of our results, comparisons 
have been made with the finite difference method . Excellent 
correlation can be observed between both methods for the 
dimensionless velocity profile (U) with transverse coordinate 
(Y). Spatial-temporal variations of the velocity and 
temperature fields for various flow cases are shown in figures 
2 a ,b, Fig. 3 and Fig. 4. Figs. 2(a) and 2(b) shows the 
velocity, U and temperature, θ, profiles with respect to both 
space Y and time t for the general flow case. In Fig. 2a the 
oscillatory nature of the flow is clear with peak velocities 
always corresponding to the centre of the channel. With 
increase in time, the magnitude of these peaks is increased. On 
the other hand in Fig. 2b the temperature () distribution is not 
oscillatory in nature and descends smoothly for all time, from 
a maximum of 1 at the upper plate (Y = 1) to -1 at the lower 
plate (Y = -1). 

 
Fig. 2a: Non- Dimensional velocity profile (U) versus transverse 

coordinate (Y) and time (t) for the general magneto-bio-
rheological, non-Darcian case. 

 

Fig. 2b: Non-Dimensional temperature profile (θ) versus 
transverse coordinate (Y) and time (t) for the general magneto-

bio-rheological, non-Darcian case. 
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In figs. 3 to 7, presented the spatial distributions of 
temperature and velocity , each at t = 0.5, for variation of 
different control parameters in the model.  

Fig. 3 shows the influence of the transpiration Reynolds 
number on velocity profile at time t = 0.5. As expected, an 
increase in Reynolds number from 0.05 to 1 increases the fluid 
velocity i.e. accelerates flow across the channel. The profiles 
although generally parabolic are increasingly skewed to the 
right i.e. towards the upper plate (Y = 1), with an increase in 
Re since this parameter incorporates the suction velocity (Vo) 
i.e. with greater Re values suction at the upper plate will be 
enhanced which will serve to displaces the velocity 
distribution towards the upper plate. 

 

Fig. 3: U versus Y for various transpiration  

Reynolds numbers (Re) at t = 0.5 

Fig. 4 shows the influence of rheological parameter, β, on 
fluid velocity at time t = 0.5. Smaller value of this parameter 
correspond to stronger non-Newtonian behaviour (i.e. a rise in 
the viscosity) which will decelerate the flow and reduce 
longitudinal fluid velocity, U. β  ∞ represents the case of a 
Newtonian fluid which corresponds to the lowest value of 
fluid viscosity and contributes to the maximum velocity 
computed.  =1 corresponds to strongly rheological flow at 
higher viscosity and results in the minimization of fluid 
velocity, U across the channel. 

 

Fig.  4: U versus Y for various non-Newtonian  
parameter values ( β)  at t = 0.5 

Fig. 5 depicts the effect of hydromagnetic parameter, Nm, on 
velocity profile at time t = 0.5. Decrease in the velocity of bio-
rheological fluid due to the increase in the retarding force 
(Lorentz body force) generated by the magnetic field as Nm 
increses.  

 

Fig. 5: U versus Y for various hydromagnetic  
parameter values (Nm) at t = 0.5 

Fig. 6 shows the influence of Eckert Number Ec on 
temperature profile at time t = 0.5. Ec quantifies the ratio of 
kinetic energy of the flow to the enthalpy difference. Very 
small mechanical energy is dissipated as heat in the fluid i.e. 
no warming effect occurs throughout the entire lower semi-
section of the channel (-1<Y<0) where temperatures remain 
negative when Ec value is low i.e. 6.2x10-11. The negativity of 
temperature is forced by the lower boundary condition ( = -1 
at Y = -1 in 8a). This negative temperature behaviour is 
sustained throughout most of the upper semi-section of the 
channel also (0< Y < 0.9) until temperatures cross-over very 
close to the upper heated plate at Y ~ 0.9. We observe that 
there is a considerable increase in the temperature profiles for 
higher Ec value (Ec=3)as depicted by Fig.6 . This effect is 
clearly absent at the very low values of Ec since the viscous 
heating term has negligible effect at these values.  

 

Fig. 6:  versus Y for various Eckert numbers (Ec) at t = 0.5 
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Finally in Fig. 7 depicts the effect of Prandtl number on 
temperature profiles () . Pr is the ratio of momentum 
diffusivity to thermal diffusivity. Larger Pr fluids (Pr >1) will 
diffuse momentum faster than heat. For Pr = 1 the momentum 
and energy will be diffused at the same rate. Increasing Pr 
from 1 through 5, 10 and 21 therefore will decrease 
temperatures of the biofluid in the channel, as observed in Fig. 
7. In consistency with the spatial boundary conditions 
temperatures increases from the minimum value of -1 at the 
lower plate to the maximum value of 1 at the upper plate. 

 

Fig. 7:  versus Y for various Prandtl numbers  (Pr) at t = 0.5 

5. CONCLUSIONS 

In the present study, the pulsatile Bio-magneto-rheological 
blood flow through a horizontal channel containing a porous 
medium in the presence of a transverse magnetic field with 
viscous heating performed numerically using the FEM. 
Numerical results have shown that an increase in Darcy 
parameter (λ), transpiration Reynolds number (Re), 
rheological parameter (β) , Prandtl number (Pr) and Ecret 
number (EC) here the steady shows the component of pressure 
gradient (Ps) accelerates the fluid flow, whereas fluid velocity 
is reduced with an increase hydromagnetic number. A major 
increase is observed in temperature profile for high Eckert 
numbers, which is absent when Ec is small. The results 
indicate that the magnetic field has a considerable effect on 
the velocity profile as does the porous medium and the 
biofluid rheology. There is some other instersting results 
depicted in other physical parameter. 
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